3.1883 \(\int \frac {1}{(a+\frac {b}{x^2})^3 x^4} \, dx\)

Optimal. Leaf size=65 \[ \frac {\tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{8 a^{3/2} b^{3/2}}+\frac {x}{8 a b \left (a x^2+b\right )}-\frac {x}{4 a \left (a x^2+b\right )^2} \]

[Out]

-1/4*x/a/(a*x^2+b)^2+1/8*x/a/b/(a*x^2+b)+1/8*arctan(x*a^(1/2)/b^(1/2))/a^(3/2)/b^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 65, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {263, 288, 199, 205} \[ \frac {\tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{8 a^{3/2} b^{3/2}}+\frac {x}{8 a b \left (a x^2+b\right )}-\frac {x}{4 a \left (a x^2+b\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b/x^2)^3*x^4),x]

[Out]

-x/(4*a*(b + a*x^2)^2) + x/(8*a*b*(b + a*x^2)) + ArcTan[(Sqrt[a]*x)/Sqrt[b]]/(8*a^(3/2)*b^(3/2))

Rule 199

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (In
tegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[p]
)

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 263

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(m + n*p)*(b + a/x^n)^p, x] /; FreeQ[{a, b, m
, n}, x] && IntegerQ[p] && NegQ[n]

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+\frac {b}{x^2}\right )^3 x^4} \, dx &=\int \frac {x^2}{\left (b+a x^2\right )^3} \, dx\\ &=-\frac {x}{4 a \left (b+a x^2\right )^2}+\frac {\int \frac {1}{\left (b+a x^2\right )^2} \, dx}{4 a}\\ &=-\frac {x}{4 a \left (b+a x^2\right )^2}+\frac {x}{8 a b \left (b+a x^2\right )}+\frac {\int \frac {1}{b+a x^2} \, dx}{8 a b}\\ &=-\frac {x}{4 a \left (b+a x^2\right )^2}+\frac {x}{8 a b \left (b+a x^2\right )}+\frac {\tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{8 a^{3/2} b^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 58, normalized size = 0.89 \[ \frac {\frac {\sqrt {a} \sqrt {b} x \left (a x^2-b\right )}{\left (a x^2+b\right )^2}+\tan ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{8 a^{3/2} b^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b/x^2)^3*x^4),x]

[Out]

((Sqrt[a]*Sqrt[b]*x*(-b + a*x^2))/(b + a*x^2)^2 + ArcTan[(Sqrt[a]*x)/Sqrt[b]])/(8*a^(3/2)*b^(3/2))

________________________________________________________________________________________

fricas [A]  time = 0.77, size = 190, normalized size = 2.92 \[ \left [\frac {2 \, a^{2} b x^{3} - 2 \, a b^{2} x - {\left (a^{2} x^{4} + 2 \, a b x^{2} + b^{2}\right )} \sqrt {-a b} \log \left (\frac {a x^{2} - 2 \, \sqrt {-a b} x - b}{a x^{2} + b}\right )}{16 \, {\left (a^{4} b^{2} x^{4} + 2 \, a^{3} b^{3} x^{2} + a^{2} b^{4}\right )}}, \frac {a^{2} b x^{3} - a b^{2} x + {\left (a^{2} x^{4} + 2 \, a b x^{2} + b^{2}\right )} \sqrt {a b} \arctan \left (\frac {\sqrt {a b} x}{b}\right )}{8 \, {\left (a^{4} b^{2} x^{4} + 2 \, a^{3} b^{3} x^{2} + a^{2} b^{4}\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x^2)^3/x^4,x, algorithm="fricas")

[Out]

[1/16*(2*a^2*b*x^3 - 2*a*b^2*x - (a^2*x^4 + 2*a*b*x^2 + b^2)*sqrt(-a*b)*log((a*x^2 - 2*sqrt(-a*b)*x - b)/(a*x^
2 + b)))/(a^4*b^2*x^4 + 2*a^3*b^3*x^2 + a^2*b^4), 1/8*(a^2*b*x^3 - a*b^2*x + (a^2*x^4 + 2*a*b*x^2 + b^2)*sqrt(
a*b)*arctan(sqrt(a*b)*x/b))/(a^4*b^2*x^4 + 2*a^3*b^3*x^2 + a^2*b^4)]

________________________________________________________________________________________

giac [A]  time = 0.15, size = 50, normalized size = 0.77 \[ \frac {\arctan \left (\frac {a x}{\sqrt {a b}}\right )}{8 \, \sqrt {a b} a b} + \frac {a x^{3} - b x}{8 \, {\left (a x^{2} + b\right )}^{2} a b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x^2)^3/x^4,x, algorithm="giac")

[Out]

1/8*arctan(a*x/sqrt(a*b))/(sqrt(a*b)*a*b) + 1/8*(a*x^3 - b*x)/((a*x^2 + b)^2*a*b)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 49, normalized size = 0.75 \[ \frac {\arctan \left (\frac {a x}{\sqrt {a b}}\right )}{8 \sqrt {a b}\, a b}+\frac {\frac {x^{3}}{8 b}-\frac {x}{8 a}}{\left (a \,x^{2}+b \right )^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b/x^2)^3/x^4,x)

[Out]

(1/8/b*x^3-1/8/a*x)/(a*x^2+b)^2+1/8/b/a/(a*b)^(1/2)*arctan(1/(a*b)^(1/2)*a*x)

________________________________________________________________________________________

maxima [A]  time = 1.86, size = 62, normalized size = 0.95 \[ \frac {a x^{3} - b x}{8 \, {\left (a^{3} b x^{4} + 2 \, a^{2} b^{2} x^{2} + a b^{3}\right )}} + \frac {\arctan \left (\frac {a x}{\sqrt {a b}}\right )}{8 \, \sqrt {a b} a b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x^2)^3/x^4,x, algorithm="maxima")

[Out]

1/8*(a*x^3 - b*x)/(a^3*b*x^4 + 2*a^2*b^2*x^2 + a*b^3) + 1/8*arctan(a*x/sqrt(a*b))/(sqrt(a*b)*a*b)

________________________________________________________________________________________

mupad [B]  time = 1.12, size = 55, normalized size = 0.85 \[ \frac {\mathrm {atan}\left (\frac {\sqrt {a}\,x}{\sqrt {b}}\right )}{8\,a^{3/2}\,b^{3/2}}-\frac {\frac {x}{8\,a}-\frac {x^3}{8\,b}}{a^2\,x^4+2\,a\,b\,x^2+b^2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^4*(a + b/x^2)^3),x)

[Out]

atan((a^(1/2)*x)/b^(1/2))/(8*a^(3/2)*b^(3/2)) - (x/(8*a) - x^3/(8*b))/(b^2 + a^2*x^4 + 2*a*b*x^2)

________________________________________________________________________________________

sympy [B]  time = 0.33, size = 110, normalized size = 1.69 \[ - \frac {\sqrt {- \frac {1}{a^{3} b^{3}}} \log {\left (- a b^{2} \sqrt {- \frac {1}{a^{3} b^{3}}} + x \right )}}{16} + \frac {\sqrt {- \frac {1}{a^{3} b^{3}}} \log {\left (a b^{2} \sqrt {- \frac {1}{a^{3} b^{3}}} + x \right )}}{16} + \frac {a x^{3} - b x}{8 a^{3} b x^{4} + 16 a^{2} b^{2} x^{2} + 8 a b^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x**2)**3/x**4,x)

[Out]

-sqrt(-1/(a**3*b**3))*log(-a*b**2*sqrt(-1/(a**3*b**3)) + x)/16 + sqrt(-1/(a**3*b**3))*log(a*b**2*sqrt(-1/(a**3
*b**3)) + x)/16 + (a*x**3 - b*x)/(8*a**3*b*x**4 + 16*a**2*b**2*x**2 + 8*a*b**3)

________________________________________________________________________________________